Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 18(4): e0281257, 2023.
Article in English | MEDLINE | ID: covidwho-2296075

ABSTRACT

BACKGROUND: Identifying a specific threshold level of SARS-CoV-2 antibodies that confers protection in immunocompromised patients has been very challenging. The aim was to assess the threshold of 264 binding antibody units (BAU)/ml using four different SARS-CoV-2 antibody assays (Abbott, Beckman, Roche, and Siemens) and to establish a new optimal threshold of protection for each of the four antibody assays. METHODS: This study was performed on data retrieved from 69 individuals, who received at least one dose of the Pfizer/BioNTech BNT162b2 or Moderna COVID-19 vaccine (Spikevax) at the Alphabio Laboratory in Marseille, France (European Hospital, Alphabio-Biogroup). The results were compared to the percent inhibition calculated using a functional surrogate of a standardized virus neutralization test (Genscript). RESULTS: Samples from 69 patients were analyzed. For a reference cutoff of 264 BAU/ml, assays showed moderate to good overall concordance with Genscript: 87% concordance for Abbott, 78% for Beckman, 75% for Roche, and 88% for Siemens. Overall concordance increased consistently after applying new thresholds, i.e., 148 BAU/ml (Abbott), 48 (Beckman), 559 (Roche), and 270 (Siemens). CONCLUSION: We suggest specific adjusted thresholds (BAU/ml) for the four commercial antibody assays that are used to assess pre-exposure prophylaxis in immunocompromised patients.


Subject(s)
COVID-19 , Spiders , Humans , Animals , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , Antibodies, Viral , Immunocompromised Host
2.
PLoS One ; 18(3): e0283165, 2023.
Article in English | MEDLINE | ID: covidwho-2276168

ABSTRACT

OBJECTIVES: To evaluate the impact of local therapeutic recommendation updates made by the COVID multidisciplinary consultation meeting (RCP) at the Hôpital Européen Marseille (HEM) through the description of the drug prescriptions for COVID-19 during the first two waves of the epidemic. METHODS: This retrospective observational study analysed data from the hospital's pharmaceutical file. We included all patients hospitalized for COVID-19 between February 1, 2020 and January 21, 2021 and extracted specific anti-COVID-19 therapies (ST) from computerized patient record, as well as patients' demographic characteristics, comorbidities and outcome. The evolution of ST prescriptions during the study period was described and put into perspective with the updates of local recommendations made during the first (V1, from 2/24/2020 to 7/27/2020), and second (V2, from 7/28/2020 to 1/21/2021) epidemic waves. RESULTS: A total of 607 COVID-19 hospitalized patients, 197 during V1 and 410 during V2. Their mean age was 65 years-old, and they presented frequent comorbidities. In total, 93% of hospitalized patients received ST: anticoagulants (90%), glucocorticoids (39%) mainly during V2 (49% vs 17%, P<0.001), and azithromycin (30%) mainly during V1 (71% vs 10%, P<0.001). Lopinavir/ritonavir and hydroxychloroquine were prescribed to 17 and 7 inpatients, respectively, and only during V1. Remdesivir was never administered. A total of 22 inpatients were enrolled into clinical trials. CONCLUSIONS: The effective dissemination of evidence-based and concerted recommendations seems to have allowed an optimized management of COVID-19 drug therapies in the context of this emerging infection with rapidly evolving therapeutic questions.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , SARS-CoV-2 , COVID-19 Drug Treatment , Tertiary Care Centers , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Hydroxychloroquine/therapeutic use , Antiviral Agents/therapeutic use
3.
Ann Vasc Surg ; 86: 35-42, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1914174

ABSTRACT

BACKGROUND: COVID-19 infection is associated not only with venous thromboses but also with arterial thromboses (COV-ATs) in relation with an endothelial dysfunction, a coagulopathy and rhythm disorders. The incidence, the topography, and the prognosis of COV-ATs remain poorly known. The objective of this study was to report the overall experience of the Greater Paris University Hospitals (Assistance Publique - Hopitaux de Paris, AP-HP) during the first pandemic wave of COVID-19 infection. METHODS: After approval by the ethics committee, a study using the AP-HP clinical data warehouse was carried out between March and May 2020. Overall, 124,609 patients had a polymerase chain reaction for COVID-19 in our hospitals, of which 25,345 were positive. From 20,710 exploitable stays, patients tested positive for COVID who presented an episode of acute COV-AT (except coronary and intracranial arteries) were selected on the basis of the French medical classification for clinical procedures codes. The data are presented as absolute values with percentages and/or means with standard deviation. RESULTS: Over the studied period, 60 patients (aged 71±14 years, 42 men) presented a COV-AT at the time of their hospitalization, an incidence of 0.2%. The arterial complication occurred 3±7 days after the COVID infection and was inaugural in 30% of the cases (n = 18). The sites of COV-AT were the lower extremities (n = 35%, 58%), the abdominal aorta (n = 10%, 17%), the thoracic aorta (n = 7%, 12%), the upper limbs (n = 7%, 12%), the cerebral arteries (n = 7%, 12%), the digestive arteries (n = 6%, 10%), the renal arteries (n = 2%, 3%), and the ophthalmic artery (n = 1%, 2%). Multiple COV-ATs were observed in 13 patients (22%). At the time of diagnosis, 20 (33%) patients were in intensive care, including six (10%) patients who were intubated. On computed tomography angiography, COVID lesions were classified as moderate and severe in 25 (42%) and 21 (35%) cases, respectively. Revascularization was attempted in 27 patients (45%), by open surgery in 16 cases, using endovascular techniques in 8 cases and with a hybrid approach in three cases. Six patients (22%) required reinterventions. The duration of hospitalization was 12±9 days. Early mortality (in-hospital or at 30 days) was 30% (n = 18). Nine (15%) patients presented severe nonlethal ischemic complications. CONCLUSIONS: Arterial involvement is rare during COVID-19 infection. The aorta and the arteries of the limbs are the privileged sites. The morbi-mortality of these patients is high. Future studies will have to determine if the systematization of anticoagulation therapy decreases the incidence and the severity of the condition.


Subject(s)
COVID-19 , Thrombosis , Male , Humans , SARS-CoV-2 , Treatment Outcome , Thrombosis/diagnostic imaging , Thrombosis/epidemiology , Thrombosis/therapy , Arteries
4.
Preprints.org ; 2022.
Article in English | EuropePMC | ID: covidwho-1786437

ABSTRACT

Background: Identifying a specific threshold level of SARS-CoV-2 antibodies that confers protection in immunocompromised patients has been very challenging. The aim was to assess the threshold of 264 binding antibody units (BAU)/ml using four different SARS-CoV-2 antibody assays (Abbott, Beckman, Roche, and Siemens) and to establish a new optimal threshold of protection for each of the four antibody assays. Methods: This study was performed on data retrieved from 69 individuals, who received at least one dose of the Pfizer/BioNTech BNT162b2 or Moderna COVID-19 vaccine (Spikevax) at the Alphabio Laboratory in Marseille, France (European Hospital, Alphabio –Biogroup). The results were compared to the percent inhibition calculated using a functional surrogate of a standardized virus neutralization test (Genscript). Results: Samples from 69 patients were analyzed. For a reference cutoff of 264 BAU/ml, assays showed moderate to good overall concordance with Genscript: 87% concordance for Abbott, 78% for Beckman, 75% for Roche, and 88% for Siemens. Overall concordance increased consistently after applying new thresholds, i.e., 148 BAU/ml (Abbott), 48 (Beckman), 559 (Roche), and 270 (Siemens). Conclusion: We suggest specific adjusted thresholds (BAU/ml) for the four commercial antibody assays that are used to assess pre-exposure prophylaxis in immunocompromised patients.

5.
Lancet Public Health ; 6(4): e222-e231, 2021 04.
Article in English | MEDLINE | ID: covidwho-1199201

ABSTRACT

BACKGROUND: The objective of this study was to better understand the factors associated with the heterogeneity of in-hospital COVID-19 morbidity and mortality across France, one of the countries most affected by COVID-19 in the early months of the pandemic. METHODS: This geo-epidemiological analysis was based on data publicly available on government and administration websites for the 96 administrative departments of metropolitan France between March 19 and May 11, 2020, including Public Health France, the Regional Health Agencies, the French national statistics institute, and the Ministry of Health. Using hierarchical ascendant classification on principal component analysis of multidimensional variables, and multivariate analyses with generalised additive models, we assessed the associations between several factors (spatiotemporal spread of the epidemic between Feb 7 and March 17, 2020, the national lockdown, demographic population structure, baseline intensive care capacities, baseline population health and health-care services, new chloroquine and hydroxychloroquine dispensations, economic indicators, degree of urbanisation, and climate profile) and in-hospital COVID-19 incidence, mortality, and case fatality rates. Incidence rate was defined as the cumulative number of in-hospital COVID-19 cases per 100 000 inhabitants, mortality rate as the cumulative number of in-hospital COVID-19 deaths per 100 000, and case fatality rate as the cumulative number of in-hospital COVID-19 deaths per cumulative number of in-hospital COVID-19 cases. FINDINGS: From March 19 to May 11, 2020, hospitals in metropolitan France notified a total of 100 988 COVID-19 cases, including 16 597 people who were admitted to intensive care and 17 062 deaths. There was an overall cumulative in-hospital incidence rate of 155·6 cases per 100 000 inhabitants (range 19·4-489·5), in-hospital mortality rate of 26·3 deaths per 100 000 (1·1-119·2), and in-hospital case fatality rate of 16·9% (4·8-26·2). We found clear spatial heterogeneity of in-hospital COVID-19 incidence and mortality rates, following the spread of the epidemic. After multivariate adjustment, the delay between the first COVID-19-associated death and the onset of the national lockdown was positively associated with in-hospital incidence (adjusted standardised incidence ratio 1·02, 95% CI 1·01-1·04), mortality (adjusted standardised mortality ratio 1·04, 1·02-1·06), and case fatality rates (adjusted standardised fatality ratio 1·01, 1·01-1·02). Mortality and case fatality rates were higher in departments with older populations (adjusted standardised ratio for populations with a high proportion older than aged >85 years 2·17 [95% CI 1·20-3·90] for mortality and 1·43 [1·08-1·88] for case fatality rate). Mortality rate was also associated with incidence rate (1·0004, 1·0002-1·001), but mortality and case fatality rates did not appear to be associated with baseline intensive care capacities. We found no association between climate and in-hospital COVID-19 incidence, or between economic indicators and in-hospital COVID-19 incidence or mortality rates. INTERPRETATION: This ecological study highlights the impact of the epidemic spread, national lockdown, and reactive adaptation of intensive care capacities on the spatial distribution of COVID-19 morbidity and mortality. It provides information for future geo-epidemiological analyses and has implications for preparedness and response policies to current and future epidemic waves in France and elsewhere. FUNDING: None.


Subject(s)
COVID-19/epidemiology , Adult , Aged , Aged, 80 and over , COVID-19/mortality , Epidemiologic Studies , Female , France/epidemiology , Geography, Medical , Hospital Mortality/trends , Humans , Incidence , Male , Middle Aged , Risk Factors , Spatial Analysis
6.
Front Oncol ; 10: 1560, 2020.
Article in English | MEDLINE | ID: covidwho-782028

ABSTRACT

Background: CT lung extent has emerged as a potential risk factor of COVID-19 pneumonia severity with mainly semiquantitative assessment, and outcome was not assessed in the specific oncology setting. The main goal was to evaluate the prognostic role of quantitative assessment of the extent of lung damage for early mortality of patients with COVID-19 pneumonia in cancer patients. Methods: We prospectively included consecutive cancer patients with recent onset of COVID-19 pneumonia assessed by chest CT between March 15, 2020, and April 20, 2020, and followed until May 1, 2020. Demographic, clinical, laboratory test data and imaging findings were recorded. Quantitative chest CT assessment of COVID-19 pneumonia was based on the density distribution of lung lesions using a freely available software recently released (Myrian XP-Lung). The association between extent of lung damage and overall survival was studied by univariate and multivariate Cox analysis. The Uno C-index was used to assess the discriminatory value of the quantitative CT extent of lung damage. Results: Seventy cancer patients with chest CT evidence of COVID-19 were included. After a median follow-up of 25 days, 17 patients (24%) had died. The median quantitative chest CT extent of COVID-19 was 20% (IQR = 14-35, range = 3-59) for non-survivors vs. 10% (IQR = 6-15, range = 2-55) for survivors (p = 0.002). The extent of COVID-19 pneumonia was correlated with inpatient management (p = 0.003) and oxygen therapy requirements (p < 0.001). Independent factors associated with death were performance status (PS) ≥2 (HR = 3.9, 95% CI = [1.1-13.8] p = 0.04) and extent of COVID-19 pneumonia ≥30% (HR = 12.0, 95% CI = [2.2-64.4] p = 0.004). No differences were found regarding the histology of cancer, cancer stage, metastases sites, or type of oncologic treatment between the survivor and non-survivor groups. The cross-validated Uno C-index of the model including PS and extent of COVID-19 pneumonia was 0.83, 95% CI = [0.73-0.93]. Conclusions: The quantitative chest CT extent of COVID-19 pneumonia was a strong independent prognostic factor of early inpatient mortality in a population of cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL